
  

Archiving and Packaging
A Survey

Tim Kientzle
kientzle@freebsd.org

http://people.freebsd.org/~kientzle/



  

Or:
How I Accidentally Rewrote Tar



  

Outline

● A Story
● Libarchive
● Bsdtar and other tools
● Packaging: Principles and Concepts
● Towards libpkg



  

What am I talking about?

● Libarchive: Modular library for reading 
and writing “streaming archive formats”: 
tar.gz, cpio, zip, iso9660, some others.

● Bsdtar: Implementation of “tar” program 
built on libarchive.  Comparable to GNU 
tar in overall functionality.

● FreeBSD 5.3: “bsdtar”, “gtar”, “tar” is 
alias for “gtar”.

● FreeBSD 6: “tar” is alias for “bsdtar”
● FreeBSD 7: “gtar” goes away



  

How I Got Here



  

A Story

● ~1998: Teaching FreeBSD classes
● Lessons for me:  installer sucks
● New installer is a BIG job: try building one 

small component (package library)
● ~2003-2004: Unemployed

– Prototyped a new pkg_add
– Isolated archive management: libarchive
– Test harness grew into bsdtar



  

What's wrong with pkg_add?

● Slow: Scans entire archive 4 times
– Extract +CONTENTS packing list
– Extracts files to temp directory
– Archives temp directory
– De-archives into final location

● Can't use it to build new tools.
● We need libpkg.



  

What if pkg_add didn't fork tar?

● Extract +CONTENTS (always first) into 
memory

● Use +CONTENTS to drive extraction 
directly into final location.

● Result: 3-4 times speedup.
● I've prototyped this, it works.
● But pkg_add is a lot more than just 

extracting files...



  

Towards reusable components

● Libarchive: reads/writes streaming 
archives

● Libpkg: higher-level package operations



  

Libarchive



  

What is libarchive?

● Static and shared library, programming 
headers.

● Writes: tar, cpio, shar (optional gzip, 
bzip2 compression)

● Reads: tar, cpio, zip, iso9660 (all with 
optional compress, gzip, bzip2 
compression)

● Portable to FreeBSD, Linux, Mac OS, 
others.



  

Why libarchive?

● Mark Roth's libtar: Good, but heavily 
oriented around tar command-line ops. 
(Hard to extract to memory, modify items 
as they are archived, etc.)

● Other “multi-format” archiving libraries 
are seek-based:  Can't read/write tapes, 
network connections, stdio, etc.

● Libarchive was originally tar-only, but I 
realized that it was easy to generalize to 
a large class of archiving formats.



  

Libarchive API Principles

● Stream oriented
● Allow client to drive archive/extraction
● Be smart, but not too smart

– Format auto-detect
– No threads in library, no forking

● Support standards
● API and ABI stability (no structures)
● Minimize link pollution



  

Minimize Link Pollution

● Avoid the printf() mistake
● Archive read and write are completely 

independent
● Layering: Higher layers use public APIs of 

lower layers
● archive_read_support_XXX()
● archive_write_set_XXX()
● Remember: libarchive was partly targeted 

for use in installer.  Size matters!



  

Link Pollution Minimized

● 70k statically linked minitar (tar read and 
extract only, no decompression)1

● Smaller static binary than:
int main()
{
    printf(“hello, world”);
    return 0;
}

1In FreeBSD 5.3.  6.1 linker doesn't like me.



  

Libarchive API Tour

● Read
● Extract
● Write
● archive_entry
● Utility



  

General Usage

● Create a “struct archive *”
(archive object)

● Set parameters
● Open archive
● Read/write archive entries
● Close archive
● Dispose of object



  

Overall Structure

struct archive *a;
struct archive_entry *entry;
a = archive_read_new();
archive_read_support_compression_gzip(a);
archive_read_support_format_tar(a);
archive_read_open_XXX(a,...);
while (archive_read_next_header(a, &entry) == 

ARCHIVE_OK) {
    printf("%s\n", archive_entry_pathname(entry));
    archive_read_data_skip(a);
}
archive_read_finish(a);

Set
Parameters

Iterate
over

contents

Create Object

Open Archive

Close and Dispose



  

Prefixes Indicate API

struct archive *a;
struct archive_entry *entry;
a = archive_read_new();
archive_read_support_compression_gzip(a);
archive_read_support_format_tar(a);
archive_read_open_XXX(a,...);
while (archive_read_next_header(a, &entry) == 

ARCHIVE_OK) {
    printf("%s\n", archive_entry_pathname(entry));
    archive_read_data_skip(a);
}
archive_read_finish(a);



  

Usually: archive * is first arg

struct archive *a;
struct archive_entry *entry;
a = archive_read_new();
archive_read_support_compression_gzip(a);
archive_read_support_format_tar(a);
archive_read_open_XXX(a,...);
while (archive_read_next_header(a, &entry) == 

ARCHIVE_OK) {
    printf("%s\n", archive_entry_pathname(entry));
    archive_read_data_skip(a);
}
archive_read_finish(a);



  

Read API

● Object Creation
● Parameter setup

– “set” calls force values
– “support” calls enable auto-detect

● Open Archive
– Core “open” method accepts callback 

pointers for open/read/skip/close
– Library provides “open_filename”, “open_fd”, 

“open_FILE”, “open_memory” for 
convenience



  

Read API (cont)

● Iterator model
– Each call to “read_next_header()” gives 

header for next entry
– Header returned as archive_entry object
– Data can be read after header



  

Inside Auto-Detect

● read_support_format_tar(a) registers with 
read core:
– Header read
– Data read
– Bidder (taster)

● Read core has no functional 
dependencies on tar code

● If you don't call “support_tar()”, no tar 
code is linked

● Bid value is approx # bits checked



  

Read I/O Layering

● Three layers:
– Client read() callback
– Compression layer
– Format layer

● Peek/consume I/O
– Each layer returns pointer/count
– Separate “consume” advances file position
– Best case: no copying through entire library

● Future: mmap(), async I/O



  

Libarchive extract() API

● Creates objects on disk from 
archive_entry
– Creates intermediate dirs, device nodes, links
– Invokes archive_read_data(), but otherwise 

separate from read core

● Extraction holds a surprising amount of 
state
– Permission/ownership updates are deferred
– Caches GID/UID lookups
– Link resolution (cpio-only)



  

Correctly Restoring Permissions

● Some ugly cases:
– Non-writable directories
– Hard links to privileged files
– Restoring directory mtimes
– Mixed ownership

● Remember: tar does not promise file 
ordering! (tar -u)

● Solution:  Certain permissions are 
restored only at archive close



  

Libarchive Write API

● Write core
– Two-phase: header, then data
– Note: Header must include size

● No “write file” layer (yet?)
● Client callbacks write bytes to archive



  

Writing one Entry

entry = archive_entry_new();
archive_entry_copy_stat(entry, &st);
archive_entry_set_pathname(entry, filename);
archive_write_header(a, entry);
fd = open(filename, O_RDONLY);
len = read(fd, buff, sizeof(buff));
while ( len > 0 ) {
        archive_write_data(a, buff, len);
        len = read(fd, buff, sizeof(buff));
}
archive_entry_free(entry);



  

Libarchive Write Internals

● Simpler than read.
● One source file per format, etc.
● Write blocking is a little tricky



  

Archive_entry

● Represents “header” of an entry in the 
archive

● Think: “struct stat” on steroids
– Filename
– Linkname
– File flags
– ACLs
– Implicit narrow/wide filename conversions

● Used both by read and write



  

Utility API

● Set/extract error messages
● Get format code, name
● Get compression code, name



  

Questions about Libarchive?



  

tar



  

Some things you probably 
didn't know:

● POSIX specified tar and cpio programs in 
1988, but dropped them in 2001.

● “pax” utility (1993-) now defines tar & 
cpio formats.

● “Pax Interchange Format” (2001) extends 
“ustar”, which extends historical tar.

● Pax interchange format does (almost) 
everything you want.

● www.unix.org/single_unix_specification/



  

Pax Interchange Format

● Allows arbitrary key=value attributes to 
be attached to any entry.
– Values are in UTF-8
– Arbitrary lengths (up to 8GB total in theory)

● Standard attributes include arbitrary-size 
versions of standard fields (name, file 
size, time, uid, uname, etc).

● Vendor-specific extensions support ACLs, 
file flags, etc. (libarchive supports most 
'star' keys, can support others).



  

Bsdtar and friends

● Started as test harness and second client 
for libarchive API checks (pkg_add 
prototype was first)

● Eventually grew into full-featured 
replacement for GNU tar.

● Supports most GNU tar options, reads 
gtar format, etc.

● Still needed: libarchive-based cpio, pax
● Special thanks: Kris Kennaway



  

Tar security

● Libarchive's two-phase permissions 
extract helps a lot.

● During restore, directories have restricted 
permissions.

● Other cases that bsdtar handles:
– Absolute pathnames, .. components, symlink 

traversal

● Bsdtar prohibits all of these by default.
● -P option suppresses these checks.



  

Bsdtar vs GNU tar

● BSD license
● Full auto-detect
● Implements POSIX 

standards
● Multiple format 

support (ZIP, cpio, 
ISO9660)

● Reusable libarchive

● GPL
● Writes sparse files
● Multi-volume 

support
● RMT support
● Well-tested, 

reliable



  

Bsdtar vs star

● BSD license
● Full auto-detect
● Multiple format 

support (ZIP, cpio, 
ISO9660)

● Reusable libarchive

● GPL
● Writes sparse files
● Multi-volume, RMT 

support
● Fast
● Well-tested, 

reliable



  

Questions about bsdtar?



  

Packaging and libpkg



  

Towards libpkg

● Survey of overall package system
● Proposed libpkg architecture
● Status Report



  

Elements of a Package System

● “Package Archive” describes a group of 
files that can be installed onto a system 
(tar.gz or tar.bz2 file)

● “Package Repository” holds package 
archives (CD-ROM, HTTP or FTP site, etc.)

● “Package Database” tracks files on local 
system (/var/db/pkg)

● “Package” is a collection of files plus 
management information.



  

Package System

Pkg 
Repository

Pkg Archive

PA

PAPA

File

File

File

Pkg DB



  

libpkg

● pkgdb: Keeps track of files and packages.
● Pkg: An object in the pkgdb.  A pkg object 

describes files with attributes.
● pkg_repo: A connection to a repository
● pkg_archive: A tool for examining, 

extracting, and creating package archives
● pkg_manifest: list of files and attributes 

(with textual representation)



  

Questions

● Pkgdb: “What pkg contains this file?”
● Pkgdb: “Is pkg XYZ installed?”
● Pkg: “What files do you contain?”
● Pkg: “Please add/remove file ABC.”
● Pkg_repo: “Give me archive for XYZ.”
● Pkg_archive: “Give me manifest.”
● Pkg_manifest: “Tell me files/attributes, 

dependencies.”



  

pkg_add outline

● Contact pkg_repo
● Ask pkg_repo for file handle
● Create pkg_archive around file handle
● Extract and parse manifest
● Create package entry in pkgdb
● Iterate over pkg_archive contents
● Copy each item to disk/add to package



  

pkg_create

● Build new manifest (possibly from pkgdb 
entries, possibly from separate 
description)

● Create pkg_archive
● Write manifest to archive
● Write each file to archive



  

Other Utilities

● pkg_delete: Operation on pkgdb
● pkg_register: Create pkgdb entry from 

description of installed files
● pkg_check: Iterate over packages in 

pkgdb, check each file in each package 
(optionally:  Enumerate files in /usr/local, 
identify files not in any package.)

● pkg_modify?  Add/remove/rename single 
files in package, update pkgdb from files 
on disk, etc.



  

Problem: Dependencies

● “Flow-through” installation is nice.
● But: Definitive dependency info must 

come from manifest in archive.
● Problem: stalled download.
● Partial solution #1:  Async streaming.
● Partial solution #2:  Dependency info 

from pkg_repo.  (Maybe incomplete?)
● Partial solution #3: Two-phase commit.



  

Possibility: Async Streaming

● Idea:  Use threads (or forked processes) 
to separate install from download.

● Dependency handling can then defer the 
install without stalling the download.

● Minus:  Requires disk space to store the 
package archive.

● Plus: Straightforward to implement.



  

Possibility: pkg_repo 
dependency info

● Idea:  Ask pkg_repo (via INDEX file?) for 
(possibly incomplete) dependency 
information, install dependencies first.

● Minus: This complicates rollback.
● Minus: Not all repositories can support it 

(e.g., local NFS-mounted package dir)
● Minus: Incomplete information can reduce 

stalls, but false dependencies need to be 
rolled back?



  

Possibility: Two-phase commit

● Create “tentative” entries in pkg_db, 
extract files tentatively, finalize all at 
once.

● Model:  Add file by asking package for file 
handle, package uses temp filename, 
then renames on commit.

● Plus: Simplifies package clients.
● Plus: Enables some nice tricks.
● Minus: More work to implement.



  

Problem: Conflicts

● Principle:  Files conflict, not packages.
● If there is conflict, do we:

– Skip entire package?
– Skip single files?
– Rename/move files?

● Libpkg should be agnostic about UI.
– Some tools will want to know in advance.
– Some tools will want to handle on-the-fly.



  

Problem: Rollback

● Reasons a single pkg_add can fail: 
dependencies, conflicts, failed downloads.

● Want to rollback everything together.
● Otherwise, pkg_add has to track a lot of 

information, possibility of stranded 
installs.

● Two-phase commit should make this 
easy.



  

Libpkg status

● Early design document on 
people.freebsd.org/~kientzle

● Basic pkg.h header.
● Skeletal implementations of key objects.
● Minimal pkg_add built on current 

implementation.
● Two-phase commit is in progress.



  

Miscellany: Directory Traversals



  

Dir Traversals:  First Attempt

● Recursive opendir()
– Opendir()
– Visit and stat() each entry
– Recurse if it's a directory
– Closedir()

● Plus:  Simple, handles wide trees
● Minus:  Deep trees (file descriptors)



  

Dir Traversals: Second Attempt

● Recursive opendir() with pre-read
– Opendir()
– Read all entries into memory()
– Closedir()
– Visit and stat() each one
– Recurse for directories

● Plus: Handles deep trees, hook for sorting
● Minus: Wide trees (memory)
● Fts(3) does this (but has API problems)



  

Dir Traversals: Third Attempt

● Lazy Descent
– Opendir()
– Visit and stat() each entry
– Put directories on a work list
– Closedir()
– Visit next item on work list

● Plus: Deep trees, wide (files)
● Minus: Many subdirs (memory), order can 

be surprising
● tar/tree.c does this



  

Dir Traversals: Summary

Recursive

Deep 64k path Yes

Many Files Yes Memory Yes

Yes Memory Memory

Complexity Simple High Medium

Fts(3) tar/tree.c

Filehandles

Many Subdirs



  

Archiving and Packaging
A Survey

Tim Kientzle
kientzle@freebsd.org

http://people.freebsd.org/~kientzle/


