
archive_write (3) FreeBSD Library Functions Manual archive_write (3)

NAME
archive_write_new, archive_write_set_format_cpio,
archive_write_set_format_pax, archive_write_set_format_pax_restricted,
archive_write_set_format_shar, archive_write_set_format_shar_binary,
archive_write_set_format_ustar, archive_write_get_bytes_per_block,
archive_write_set_bytes_per_block, archive_write_set_bytes_in_last_block,
archive_write_set_compression_bzip2,
archive_write_set_compression_compress,
archive_write_set_compression_gzip, archive_write_set_compression_none,
archive_write_set_compression_program,
archive_write_set_compressor_options, archive_write_set_format_options,
archive_write_set_options, archive_write_open, archive_write_open_fd,
archive_write_open_FILE, archive_write_open_filename,
archive_write_open_memory, archive_write_header, archive_write_data,
archive_write_finish_entry, archive_write_close, archive_write_finish — func-
tions for creating archives

SYNOPSIS
#include <archive.h>

struct archive ∗
archive_write_new(void);

int
archive_write_get_bytes_per_block(struct archive ∗);

int
archive_write_set_bytes_per_block(struct archive ∗ , int bytes_per_block);

int
archive_write_set_bytes_in_last_block(struct archive ∗ , int);

int
archive_write_set_compression_bzip2(struct archive ∗);

int
archive_write_set_compression_compress(struct archive ∗);

int
archive_write_set_compression_gzip(struct archive ∗);

int
archive_write_set_compression_none(struct archive ∗);

int
archive_write_set_compression_program(struct archive ∗ , const char ∗ cmd);

int
archive_write_set_format_cpio(struct archive ∗);

int
archive_write_set_format_pax(struct archive ∗);

int
archive_write_set_format_pax_restricted(struct archive ∗);

int
archive_write_set_format_shar(struct archive ∗);

FreeBSD 8.0 May 11, 2008 1

archive_write (3) FreeBSD Library Functions Manual archive_write (3)

int
archive_write_set_format_shar_binary(struct archive ∗);

int
archive_write_set_format_ustar(struct archive ∗);

int
archive_write_set_format_options(struct archive ∗ , const char ∗);

int
archive_write_set_compressor_options(struct archive ∗ , const char ∗);

int
archive_write_set_options(struct archive ∗ , const char ∗);

int
archive_write_open(struct archive ∗ , void ∗ client_data ,

archive_open_callback ∗ , archive_write_callback ∗ ,
archive_close_callback ∗);

int
archive_write_open_fd(struct archive ∗ , int fd);

int
archive_write_open_FILE(struct archive ∗ , FILE ∗ file);

int
archive_write_open_filename(struct archive ∗ , const char ∗ filename);

int
archive_write_open_memory(struct archive ∗ , void ∗ buffer ,

size_t bufferSize , size_t ∗ outUsed);

int
archive_write_header(struct archive ∗ , struct archive_entry ∗);

ssize_t
archive_write_data(struct archive ∗ , const void ∗ , size_t);

int
archive_write_finish_entry(struct archive ∗);

int
archive_write_close(struct archive ∗);

int
archive_write_finish(struct archive ∗);

DESCRIPTION
These functions provide a complete API for creating streaming archive files. Thegeneral process is to first
create thestruct archive object, set any desired options, initialize the archive, append entries, then close the ar-
chive and release all resources. The following summary describes the functions in approximately the order
they are ordinarily used:

archive_write_new()
Allocates and initializes astruct archive object suitable for writing a tar archive.

archive_write_set_bytes_per_block()
Sets the block size used for writing the archive data. Every call to the write callback function,
except possibly the last one, will use this value for the length.The third parameter is a boolean

FreeBSD 8.0 May 11, 2008 2

archive_write (3) FreeBSD Library Functions Manual archive_write (3)

that specifies whether or not the final block written will be padded to the full block size. If it is
zero, the last block will not be padded. If it is non-zero, padding will be added both before and
after compression. The default is to use a block size of 10240 bytes and to pad the last block.
Note that a block size of zero will suppress internal blocking and cause writes to be sent directly to
the write callback as they occur.

archive_write_get_bytes_per_block()
Retrieve the block size to be used for writing.A value of -1 here indicates that the library should
use default values. Avalue of zero indicates that internal blocking is suppressed.

archive_write_set_bytes_in_last_block()
Sets the block size used for writing the last block.If this value is zero, the last block will be
padded to the same size as the other blocks. Otherwise, the final block will be padded to a multi-
ple of this size. In particular, setting it to 1 will cause the final block to not be padded.For com-
pressed output, any padding generated by this option is applied only after the compression.The
uncompressed data is always unpadded. The default is to pad the last block to the full block size
(note thatarchive_write_open_filename() will set this based on the file type).Unlike
the other “set” functions, this function can be called after the archive is opened.

archive_write_get_bytes_in_last_block()
Retrieve the currently-set value for last block size.A value of -1 here indicates that the library
should use default values.

archive_write_set_format_cpio(), archive_write_set_format_pax(),
archive_write_set_format_pax_restricted(),
archive_write_set_format_shar(),
archive_write_set_format_shar_binary(),
archive_write_set_format_ustar()
Sets the format that will be used for the archive. The library can write POSIX octet-oriented cpio
format archives, POSIX-standard “pax interchange” format archives, traditional “shar” archives,
enhanced “binary” shar archives that store a variety of file attributes and handle binary files, and
POSIX-standard “ustar” archives. Thepax interchange format is a backwards-compatible tar for-
mat that adds key/value attributes to each entry and supports arbitrary filenames, linknames, uids,
sizes, etc. “Restricted pax interchange format” is the library default; this is the same as pax for-
mat, but suppresses the pax extended header for most normal files.In most cases, this will result
in ordinary ustar archives.

archive_write_set_compression_bzip2(),
archive_write_set_compression_compress(),
archive_write_set_compression_gzip(),
archive_write_set_compression_none()
The resulting archive will be compressed as specified. Note that the compressed output is always
properly blocked.

archive_write_set_compression_program()
The archive will be fed into the specified compression program. The output of that program is
blocked and written to the client write callbacks.

archive_write_set_compressor_options(), archive_write_set_format_options(),
archive_write_set_options()
Specifies options that will be passed to the currently-enabled compressor and/or format writer.
The argument is a comma-separated list of individual options. Individual options have one of the
following forms:

FreeBSD 8.0 May 11, 2008 3

archive_write (3) FreeBSD Library Functions Manual archive_write (3)

option=value
The option/value pair will be provided to every module. Modules that do not accept an
option with this name will ignore it.

option The option will be provided to every module with a value of “1”.
!option

The option will be provided to every module with a NULL value.
module:option=value, module:option, module:!option

As above, but the corresponding option and value will be provided only to modules
whose name matchesmodule.

The return value will beARCHIVE_OK if any module accepts the option, orARCHIVE_WARN if
no module accepted the option, orARCHIVE_FATAL if there was a fatal error while attempting to
process the option.

The currently supported options are:
Compressor gzip

compression-level
The value is interpreted as a decimal integer specifying the gzip compression
level.

Compressor xz
compression-level

The value is interpreted as a decimal integer specifying the compression level.
Format mtree

cksum, device, flags, gid, gname, indent, link, md5, mode, nlink,
rmd160, sha1, sha256, sha384, sha512, size, time, uid,
uname
Enable a particular keyword in the mtree output.Prefix with an exclamation
mark to disable the corresponding keyword. The default is equivalent to
“device, flags, gid, gname, link, mode, nlink, size, time, type, uid, uname”.

all Enables all of the above keywords.
use-set

Enables generation of/set lines that specify default values for the following
files and/or directories.

indent XXX needs explanation XXX

archive_write_open()
Freeze the settings, open the archive, and prepare for writing entries.This is the most generic form
of this function, which accepts pointers to three callback functions which will be invoked by the
compression layer to write the constructed archive.

archive_write_open_fd()
A convenience form of archive_write_open() that accepts a file descriptor. The
archive_write_open_fd() function is safe for use with tape drives or other block-oriented
devices.

archive_write_open_FILE()
A convenience form ofarchive_write_open() that accepts aFILE ∗ pointer. Note that
archive_write_open_FILE() is not safe for writing to tape drives or other devices that
require correct blocking.

archive_write_open_file()
A deprecated synonym forarchive_write_open_filename().

archive_write_open_filename()
A convenience form ofarchive_write_open() that accepts a filename.A NULL argument
indicates that the output should be written to standard output; an argument of “-” will open a file

FreeBSD 8.0 May 11, 2008 4

archive_write (3) FreeBSD Library Functions Manual archive_write (3)

with that name.If you have not invoked archive_write_set_bytes_in_last_block(),
thenarchive_write_open_filename() will adjust the last-block padding depending on the
file: it will enable padding when writing to standard output or to a character or block device node,
it will disable padding otherwise. You can override this by manually invoking
archive_write_set_bytes_in_last_block() before calling
archive_write_open(). The archive_write_open_filename() function is safe for
use with tape drives or other block-oriented devices.

archive_write_open_memory()
A convenience form ofarchive_write_open() that accepts a pointer to a block of memory
that will receive the archive. The finalsize_t ∗ argument points to a variable that will be
updated after each write to reflect how much of the buffer is currently in use.You should be care-
ful to ensure that this variable remains allocated until after the archive is closed.

archive_write_header()
Build and write a header using the data in the provided struct archive_entry structure. See
archive_entry(3) for information on creating and populatingstruct archive_entryobjects.

archive_write_data()
Write data corresponding to the header just written.Returns number of bytes written or -1 on
error.

archive_write_finish_entry()
Close out the entry just written. In particular, this writes out the final padding required by some
formats. Ordinarily, clients never need to call this, as it is called automatically by
archive_write_next_header() andarchive_write_close() as needed.

archive_write_close()
Complete the archive and invoke the close callback.

archive_write_finish()
Invokes archive_write_close() if it was not invoked manually, then releases all resources.
Note that this function was declared to returnvoid in libarchive 1.x, which made it impossible to
detect errors whenarchive_write_close() was invoked implicitly from this function. This
is corrected beginning with libarchive 2.0.

More information about thestruct archive object and the overall design of the library can be found in the
libarchive(3) overview.

IMPLEMENTATION
Compression support is built-in to libarchive, which uses zlib and bzlib to handle gzip and bzip2 compres-
sion, respectively.

CLIENT CALLBACKS
To use this library, you will need to define and register callback functions that will be invoked to write data to
the resulting archive. These functions are registered by callingarchive_write_open():

typedef int archive_open_callback(struct archive ∗ , void ∗ client_data)

The open callback is invoked by archive_write_open(). It should returnARCHIVE_OK if the underly-
ing file or data source is successfully opened. If the open fails, it should callarchive_set_error() to
register an error code and message and returnARCHIVE_FATAL.

typedef ssize_t archive_write_callback(struct archive ∗ ,
void ∗ client_data , const void ∗ buffer , size_t length)

FreeBSD 8.0 May 11, 2008 5

archive_write (3) FreeBSD Library Functions Manual archive_write (3)

The write callback is invoked whenever the library needs to write raw bytes to the archive. For correct
blocking, each call to the write callback function should translate into a singlewrite(2) system call.This is
especially critical when writing archives to tape drives. Onsuccess, the write callback should return the
number of bytes actually written.On error, the callback should invokearchive_set_error() to register
an error code and message and return -1.

typedef int archive_close_callback(struct archive ∗ , void
∗ client_data)

The close callback is invoked by archive_close when the archive processing is complete. The callback
should returnARCHIVE_OK on success. On failure, the callback should invoke archive_set_error()
to register an error code and message and returnARCHIVE_FATAL.

EXAMPLE
The following sketch illustrates basic usage of the library. In this example, the callback functions are simply
wrappers around the standardopen(2),write(2), andclose(2) system calls.

#ifdef __linux__
#define _FILE_OFFSET_BITS 64
#endif
#include <sys/stat.h>
#include <archive.h>
#include <archive_entry.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

struct mydata {
const char ∗ name;
int fd;

};

int
myopen(struct archive ∗ a, void ∗ client_data)
{
struct mydata ∗ mydata = client_data;

mydata->fd = open(mydata->name, O_WRONLY | O_CREAT, 0644);
if (mydata->fd >= 0)
return (ARCHIVE_OK);

else
return (ARCHIVE_FATAL);

}

ssize_t
mywrite(struct archive ∗ a, void ∗ client_data, const void ∗ buff, size_t n)
{
struct mydata ∗ mydata = client_data;

return (write(mydata->fd, buff, n));
}

int

FreeBSD 8.0 May 11, 2008 6

archive_write (3) FreeBSD Library Functions Manual archive_write (3)

myclose(struct archive ∗ a, void ∗ client_data)
{
struct mydata ∗ mydata = client_data;

if (mydata->fd > 0)
close(mydata->fd);

return (0);
}

void
write_archive(const char ∗ outname, const char ∗∗ filename)
{
struct mydata ∗ mydata = malloc(sizeof(struct mydata));
struct archive ∗ a;
struct archive_entry ∗ entry;
struct stat st;
char buff[8192];
int len;
int fd;

a = archive_write_new();
mydata->name = outname;
archive_write_set_compression_gzip(a);
archive_write_set_format_ustar(a);
archive_write_open(a, mydata, myopen, mywrite, myclose);
while (∗ filename) {
stat(∗ filename, &st);
entry = archive_entry_new();
archive_entry_copy_stat(entry, &st);
archive_entry_set_pathname(entry, ∗ filename);
archive_write_header(a, entry);
fd = open(∗ filename, O_RDONLY);
len = read(fd, buff, sizeof(buff));
while (len > 0) {

archive_write_data(a, buff, len);
len = read(fd, buff, sizeof(buff));

}
archive_entry_free(entry);
filename++;

}
archive_write_finish(a);

}

int main(int argc, const char ∗∗ argv)
{

const char ∗ outname;
argv++;
outname = argv++;
write_archive(outname, argv);
return 0;

}

FreeBSD 8.0 May 11, 2008 7

archive_write (3) FreeBSD Library Functions Manual archive_write (3)

RETURN VALUES
Most functions returnARCHIVE_OK (zero) on success, or one of several non-zero error codes for errors.
Specific error codes include:ARCHIVE_RETRY for operations that might succeed if retried,
ARCHIVE_WARN for unusual conditions that do not prevent further operations, andARCHIVE_FATAL for
serious errors that make remaining operations impossible.The archive_errno() and
archive_error_string() functions can be used to retrieve an appropriate error code and a textual error
message.

archive_write_new() returns a pointer to a newly-allocatedstruct archive object.

archive_write_data() returns a count of the number of bytes actually written. On error, -1 is returned
and thearchive_errno() andarchive_error_string() functions will return appropriate values.
Note that if the client-provided write callback function returns a non-zero value, that error will be propagated
back to the caller through whatever API function resulted in that call, which may include
archive_write_header(), archive_write_data(), archive_write_close(), or
archive_write_finish(). The client callback can callarchive_set_error() to provide values
that can then be retrieved by archive_errno() andarchive_error_string().

SEE ALSO
tar(1),libarchive(3),tar(5)

HISTORY
Thelibarchive library first appeared inFreeBSD5.3.

AUTHORS
Thelibarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
There are many peculiar bugs in historic tar implementations that may cause certain programs to reject ar-
chives written by this library. For example, several historic implementations calculated header checksums
incorrectly and will thus reject valid archives; GNU tar does not fully support pax interchange format; some
old tar implementations required specific field terminations.

The default pax interchange format eliminates most of the historic tar limitations and provides a generic
key/value attribute facility for vendor-defined extensions. Oneoversight in POSIX is the failure to provide a
standard attribute for large device numbers. This library uses “SCHILY.devminor” and “SCHILY.devmajor”
for device numbers that exceed the range supported by the backwards-compatible ustar header. These keys
are compatible with Joerg Schilling’s star archiver. Other implementations may not recognize these keys
and will thus be unable to correctly restore device nodes with large device numbers from archives created by
this library.

FreeBSD 8.0 May 11, 2008 8

